

CHEP 2000, Padova, Feb 2000

Operational Experience with the BABAR Database

David R. Quarrie Lawrence Berkeley National Laboratory for *BABAR* Computing Group *DRQuarrie@LBL.GOV*

D. Quarrie⁵, T. Adye⁶, A. Adesanya⁷, J-N. Albert⁴, J. Becla⁷, D. Brown⁵, C. Bulfon³, I. Gaponenko⁵, S. Gowdy⁵, A. Hanushevsky⁷, A. Hasan⁷, Y. Kolomensky², S. Mukhortov¹, S. Patton⁵, G. Svarovski¹, A. Trunov⁷, G. Zioulas⁷

for the BABAR Computing Group

- ¹ Budker Institute of Nuclear Physics, Russia
- ³ INFN, Rome, Italy
- ⁵ Lawrence Berkeley National Laboratory, USA
- ⁷ Stanford Linear Accelerator Center, USA

² California Institute of Technology, USA
⁴ Lab de l'Accelerateur Lineaire, France
⁶ Rutherford Appleton Laboratory, UK

- Many other talks describe other aspects of *BABAR* Database
 - A. Adesanya, An interactive browser for BABAR databases
 - J. Becla, Improving Performance of Object Oriented Databases, BABAR Case Studies
 - I. Gaponenko, An Overview of the BABAR Conditions Database
 - A. Hanushevsky, Practical Security in large-Scale Distributed Object Oriented Databases
 - A. Hanushevsky, *Disk Cache Management in Large-Scale Object Oriented Databases*
 - E. Leonardi, Distributing Data around the BABAR collaboration's Objectivity Federations
 - S. Patton, Schema migration for BABAR Objectivity Federations
 - G. Zioulas, *The BABAR Online Databases*
- Focus on some of the operational aspects
 - Lessons learnt during 12 months of production running

Experiment Characteristics

Size Characteristic No. of Detector Subsystems No. of Electronic Channels ~250,000 ~32kBytes Raw Event Size DAQ to Level 3 Trigger 2000Hz 50MByte/sec Level 3 to Reconstruction 2.5MByte/sec 100Hz 100Hz 7.5MByte/sec Reconstruction 10⁹ events/year Event Rate Storage Requirements (real ~300TByte/year & simulated data)

7

Performance Requirements

- Online Prompt Reconstruction
 - Baseline of 200 processing nodes
 - 100 Hz total (physics plus backgrounds)
 - ←30 Hz of Hadronic Physics
 - Fully reconstructed
 - ←70 Hz of backgrounds, calibration physics
 - Not necessarily fully reconstructed
- Physics Analysis
 - DST Creation
 - $\leftarrow 2$ users at 10⁹ events in 10⁶ secs (1 month)
 - **DST** Analysis
 - $\leftarrow 20$ users at 10^8 events in 10^6 secs
 - Interactive Analysis
 - ←100 users at 100events/secs

5

- Basic design/functionality ok
- No performance or scaling problems with conditions, ambient and configuration databases
- Security and data protection APIs added
 - Internal to a federation
 - Access to different federations
- Startup problems being resolved
 - Scaling problems with event store
 - Online Prompt Reconstruction
 - Physics Analysis
 - Data Distribution
 - Internal within SLAC
 - External to/from remote Institutions

CHEP 2000, Padova, Feb 2000 SLAC Hardware Configuration

David R. Quarrie: Operational Experience with the BaBar Database

- Developer Test
 - Dedicated server with 500GB disk & two lockserver machines
 - Saturation of transaction table with a single lock server
 - Test federations typically correspond to *BABAR* software releases
 - **5** federation ids assigned per developer
 - Space at a premium separate journal file area
- Shared Test
 - Developer communities
 - ←(*e.g.* reconstruction)
 - Share hardware with developer test federations
 - Space becoming a problem dedicated servers being setup
- Production Releases
 - Used during the software release build process.
 - One per release and platform architecture
 - Share hardware with developer test federations

- Online (IR2)
 - Used for online calibrations, slow controls information, configurations
 - Servers physically located in experiment hall
- Online Prompt Reconstruction (OPR)
 - Pseudo real-time reconstruction of raw data
 - ← Designed to share IR2 federation as 2nd autonomous partition
 - Intermittent DAQ run startup interference caused split
 - Still planned to recombine
 - Input from files on spool disk
 - Decoupling to prevent possible deadtime
 - These files also written to tape
 - 100-200 processing nodes
 - Design is 200 with 100Hz input event rate
 - Output to several database servers with 3TB of disk
 - Automatic migration to hierarchical mass store tape
- Reprocessing
 - Clone of OPR for bulk reprocessing with improved algorithms *etc*.
 - Reprocessing from raw data tapes
 - Eeing configured now first reprocessing scheduled for March 2000

David R. Quarrie: Operational Experience with the BaBar Database

Production Federations (3)

- Physics Analysis
 - Main physics analysis activities
 - Decoupled from OPR to prevent interference
- Simulation Production
 - Bulk production of simulated data
 - Small farm of ~30 machines
 - Augmented by farm at LLNL writing to same federation
 - Other production site databases imported to SLAC
- Simulation Analysis
 - Shares same servers as physics analysis federation
 - Separate federations to allow more database ids
 - Not possible to access physics and simulation data simultaneously
- Testbed federation
 - Dedicated servers with up to 240 clients
 - Performance scaling as function of number of servers, filesystems per server, cpus per server, and other configuration parameters

- Data Servers form primary interface
- Different *regions* on disk
 - Staged: Databases managed by staging/migration/purging service
 - *Resident*: Databases are never staged or purged
 - Dynamic: Neither staged, migrated or purged
 - Metadata such as federation catalog, management databases
 - Frequently modified so would be written to tape frequently
 - Only single slot in namespace but multiple space on tape
 - Explicit backups taken during scheduled outages
 - *Test*: Not managed.

Test new applications and database configurations

- Analysis federation staging split into two servers
 - *User*: Explicit staging requests based on input event collections
 - *Kept*: Centrally managed access to particular physics runs

Movement of data between Federations

- Several federations form coupled sets
 - Physics
 - Online, OPR, Analysis
 - Simulation
 - Production, Analysis
- Data Distribution strategy to move databases between federations
 - Allocation of id ranges avoids clashes between source & destination
 - Use of HPSS namespace to avoid physical copying of databases
 - Once a database has been migrated from source, the catalog of the destination is updated and the staging procedures will read the database on demand
- Transfer causes some interference
 - Still working to understand and minimize
 - Two scheduled outages per week (10% downtime)
 - Other administrative activities
 - Backups, schema updates, configuration updates
 - ~2 day latency from OPR to physics analysis
 - Have demonstrated <6 hours in tests</p>

Physicist Access to Data

- Access via event collections
 - Mapping from event collection to databases
 - Data from any event spread across 8 databases
 - Improved performance to frequently accessed information
 - Reduction in disk space
 - Scanning of collections became bottleneck
 - Needed for explicit staging of databases from tape
 - Mapping known by OPR but not saved
 - Decided to use Oracle database for staging requests
 - Single scan of collection to databases mapping
 - Also used for production bookkeeping
 - Data distribution bookkeeping
- On-demand staging feasible using Objy 5.2
 - Has been demonstrated
 - Prefer explicit staging for production until access better understood

Production Schema Management

- Crucial that new software releases compatible with schema in production federations
 - New software release is a true superset
- *Reference* schema used to preload release build federation
- If release build is successful, the output schema forms new reference
 - Following some QA tests
- Offline and online builds can overlap in principle
 - Token passing scheme ensures sequential schema updates to reference
- Production federations updated to reference during scheduled outages
- Explicit schema evolution scheme described elsewhere

- Two database administrators
 - Daily database operations
 - Develop management scripts and procedures
 - Data distribution between SLAC production federations
 - First level of user support
- Two data distribution support people
 - Data distribution to/from regional centers and external sites
- Two HPSS (mass store) support people
 - Also responsible for AMS back-end software
 - Staging/migration/purging
 - Extensions (security, timeout deferral, etc.)
- Five database developers provide second tier support
 - Augmented by physicists, visitors

Database Statistics (Jan 2000)

- Data
 - ~33TB accumulated data
 - ~14000 databases
 - ~28000 collections
- 513 persistent classes
- Servers
 - 12 primary
 - Database servers
 - 15 secondary
 - Event Servers, catalog & journal servers
- Disk Space
 - ~10TB
 - **←**Total for data, split into staged, resident, *etc*.

Database Statistics (2)

• Sites

- >30 sites using Objectivity
 - ←USA, UK, France, Italy, Germany, Russia
- Users
 - ~655 licensees

People who have signed the license agreement

- ~430 users
 - People who have created a test federation
- ~90 simultaneous users at SLAC

Monitoring distributed oolockmon statistics

- ~60 developers
 - Have created or modified a persistent class
 - A wide range of expertise
 - 10-15 experts

- Improved performance
 - Both hardware and software improvements
 - Reduced payload per event
 - Design goals almost met
- Improved automation
 - Less burden on the support staff
- Reduced downtime and latency
 - Outage level <10%</p>
 - Latency <6 hours</p>
- Large file handling issues
 - Problems handling 10GB database files for external distribution
- Better cleanup after problems
- Remerge online and OPR federations

- Basic design and technology ok
 - No killer problems
- Initial performance problems being overcome
 - Ongoing process
 - Design goals almost met
- Still learning how to manage a large system
 - Multiple federations
 - Multiple servers
 - Multiple sites
 - Large user community
 - Large developer community
- Still more to automate
 - Many manual procedures
- More features on the way
 - Multi-dimensional indexing
 - Parallel iteration