
Object Oriented simulation of the L1 trigger system
of a CMS muon chamber

C. Grandi

Università di Bologna and INFN-Bologna, Italy

Abstract

The level 1 trigger system of the CMS experiment will be implemented using ad hoc
designed hardware. It is essential to have a detailed simulation of the system in order to effec-
tively define data analysis strategies. Object Oriented technology is well suited to reproduce
the behavour of and the relations among the different electronic devices. We present the de-
sign of the code which simulates the behavour of the level 1 trigger system of a CMS muon
chamber. The code is fully integrated with the ORCA (Object oriented Reconstruction for
CMS Analysis) program. On demand reconstruction is widely used in order to optimize CPU
and memory usage, and to provide an user-friendly interface. Persistency in an Objectivity
database is introduced in order to save the products of the most CPU consuming processes.

Keywords: CMS,trigger,simulation

1 ORCA, the Object oriented Reconstruction program for CMS Analysis

Since September 1998 CMS has built and deployed an OO reconstruction program under the
acronym ORCA. This software is built on the CARF1 architecture which supplies persistent stor-
age of data, and the framework for reconstruction and analysis. CARF is used to manage the
reconstruction utilizing a system of reconstruction on demand. Modules register themselves at
creation time and are invoked when required (implicit invocation architecture). This is acheaved
using the Dispatcher-Observer pattern. Management of the data of the different sub-detectors is
provided by the sub-systems (Tracker, Calorimetry, Muon, etc...) which implement the algorithms
to perform the different steps of the digitization and of the reconstruction. More details on ORCA
may be fond in [1].

2 Level 1 Trigger of a CMS muon chamber

Each CMS muon chamber is made up by 3 sets of drift tubes. Each set is composed by 4 layers
of tubes (quadruplet). Two quadruplets are sensible to the R-Φ coordinate and the third one to the
R-θ coordinate. The first step of the trigger system is the BTI (Bunch and Track Identifier). The
BTI finds alignments of hits in each quadruplet and determines the LHC bunch crossing in which
the muon was produced, using a mean-timer technique. The second step is the TRACO (TRAck
COrrelator) which associates two segments found by the BTI’s sensible to the R-Φ coordinate.
The last step is the TS (Trigger Server) which selects the two best segments in a chamber and
passes them to the Regional Trigger. The segments found by the BTI’s in the R-θ quadruplet are
sent to the TST (Trigger Server Theta) which packs them in bit streams that are then used by the
Regional Trigger to find alignments in the longitudinal view. The R-θ segments are also used by

1CARF: CMS Analysis and Reconstruction Framework



the TRACO to validate its R-Φ candidates. Details on the CMS muon detector and muon trigger
system may be found in [2].

3 Bit-wise algebra

Bit-wise algebra has been used whenever possible in the simulation of the Level 1 trigger, to be
as close as possible to the real electronic circuit behavour. For this pourpose the class BitArray
has been developed. Negative numbers have been implemented using the usual 2-complement
notation.

4 Simulation of the Level 1 Trigger of a CMS muon chamber within ORCA

The code which performs the simulation of the Level 1 Trigger of a CMS muon chamber is in the
ORCA Trigger subsystem. The involved packages with their dependencies are shown in figure 1.

Figure 1: Packages involved in the simulation of the Level 1 Trigger of a CMS muon chamber.

L1DTTrigger Interface package. It is responsible for the instantiation of all the objects. It
contains the objects which answer the outside world queries.

L1DTUtilities Configuration parameters and geometry of the chambers. It keeps the link
with the corresponding chamber objects in the Muon sub-system.

L1DTBti Simulation of the BTI.
L1DTTraco Simulation of the TRACO.
L1DTTriggerServerPhi Simulation of the TS (R-Φ view).
L1DTTriggerServerTheta Simulation of the TST (R-θ view).

4.1 System setup

The L1MuDTTrigSetup object is instantiated by the user as a singleton. It is a LazyObserver of
Run (see [1]). When a new run is read in it instantiates a new L1MuDTTrig object, which creates a
L1MuDTTrigUnit for each muon chamber (MuBarStat). Each L1MuDTTrigUnit has a geometry
(through a link to the associated muon chamber) and all the trigger card objects (L1MuDTBtiCard,
L1MuDTTracoCard, L1MuDTTSPhi, L1MuDTTSTheta). The cards are LazyObserver of Event
and activate themselves when their output is asked for.



Figure 2: Class diagram for objects instantiated at setup.

4.2 Event processing

The system output is accessed through the L1MuDTTrig class. In the normal simulation flow the
only use case is given by the Regional Trigger that asks for chamber segments (the output of the
Trigger Server). For debugging pourposes methods are available to access the intermediate results
from the trigger card objects. In the trigger card objects, the same methods used to pass results to
the other trigger components are also used to pass intermediate results to the users for debugging
pourposes.

4.2.1 BTI

Figure 3: Interaction diagram for BTI simulation.



There are about 450000 BTI chips in the real CMS detector and on average only 35 BTI’s
have non null data for each muon. It would be a memory waste to instantiate all of the BTI
chips at setup time. When the BTI output is asked for, the L1MuDTBtiCard checks if the event
data has already been analyzed. If not it loads the MuBarDigi (i.e. the drift times) from the
MuBarStat to the appropriate L1MuDTBtiChip, which represents the single BTI chip. If the
chip is not instantiated yet, the L1MuDTBtiCard creates it with the appropriate geometry and
configuration. After loading the drift times, all the non-empty L1MuDTBtiChip are activated. The
output is stored in a cache on the L1MuDTBtiCard ready to be delivered. The interaction diagram
for the BTI reconstruction is shown in figure 3.

In order to reproduce the mean-timer behavour, the BTI algorithm has to be run several
times, simulating the situation in the chip registers as it would appear in the real detector before
and after the expected triggering time. In the simulation code this is done 26 times in steps of 25
ns. All the triggers found at the correct and wrong times are stored, with also the triggering time
information.

4.2.2 TRACO

There are about 120000 TRACO chips in the real CMS detector. The situation is similar to the one
presented for the BTI. The L1MuDTTracoChip objects are instantiated by the L1MuDTTracoCard
only if they have non-null input from the BTI. The algorithm is run 26 times (once every 25 ns)
using as input the BTI output found at the corresponding triggering time.

4.2.3 Trigger Server

All the 250 L1MuDTTSPhi and 250 L1MuDTTSTheta (one of each per chamber) are instantiated
at setup time. As for the previous steps the algorithms are run 26 times. The main task of the
R-Φ view algorithm is a sorting of the triggers provided by the TRACO chips. Depending on the
configuration, the significance of the bits which represent the TRACO output is different. This is
acheaved both in the hardware and in the simulation by a re-ordering of the bits in the BTI-data
string. The sorting is performed by means of the operator< of the BitArray class. For the R-θ
view the algorithm is basically a packing of the bits representing the output of the BTI chips in the
R-θ view, and it is also performed using the tools provided by the BitArray class.

5 Persistency

In order to save processing time, it is foreseen that the output of the different steps of the trigger
simulation are made persistent in Objectivity/DB databases. At the end of an event processing
the cache of each trigger card object is copied to its persistent representation. In reading from
the database, simple C++ pointers to the persistent objects are loaded into the cache of the trigger
cards. CARF takes care of copying the objects to memory and to keep the pointers valid until the
end of the event processing. The use of persistent or transient data is completely transparent to the
end user. More details on object persistency in ORCA may be found in [3].

References

1 D.Stickland, “The Design, Implementation and Deployment of Functional Prototype OO
Reconstruction Software for CMS. The ORCA project”, paper submitted to this conference.

2 CMS collaboration, “The Muon Project Technical Design Report”, CERN/LHCC 97-32.
3 L.Silvestris, “An ODBMS approach for the persistency in CMS”, paper submitted to this

conference.


