
An ODBMS approach to persistency in CMS

V. Innocente1, L. Silvestris2,1,
For the CMS Collaboration

1 CERN, Geneva, Switzerland
2 INFN, Bari, Italy

Abstract

Persistent object management has been always at the centre of the CMS Analysis and Re-
construction Framework (CARF). Already the very first prototypes had an ODBMS database
(Objectivity/DB) as the key component.

Today, Objectivity/DB is fully integrated into CARF. The present version of CARF offers
persistent object management for event structure and meta-data. In particular it manages raw
data from test-beams, simulated objects (particles, hits and digis) and reconstructed objects
common to test-beams and simulation.

CARF is used for detector performance and high level trigger studies. A review of expe-
riences will be presented.

Keywords: ODBMS, HEP, LHC, CMS, Persistence, Reconstruction

Introduction

The CMS experiment [1] is one of four approved LHC experiments. Data taking is scheduled to
start in 2005 and will last at least ten years. CMS software and computing task [2] will be 10-1000
times bigger than current HEP experiments. Therefore, software should be developed keeping in
mind not only performance but also modularity, flexibility, maintainability, quality assurance and
documentation: Features not easily achievable using “traditional” HEP software tecnologies and
practices.

Since 1995 the CMS Software group has setup several R&D projects [3], [4] in order to test
new technologies and new methods which will be used to develop the final CMS software. These
R&D activities have identified new software technologies, such as object oriented programming
(C++), object data management system (Objectivity/DB), which could be successfully used to
develop CMS software. Using these technologies, different prototypes, both for online and offline
components, have been developed to validate our choices.

These were successfully tested during 1997 and 1998 test beam periods [5],[6],[8], and
today are in production for some of the CMS Test beam areas (X5B,T9,H2b) [7] and in final
detector optimisation, high level trigger studies and global detector performance evaluation using
ORCA (Object Oriented Reconstruction for CMS Analysis [9]).

CARF

The CMS Analysis and Reconstruction Framework, CARF, is described in detail elsewhere [10].
The framework currently supplies the following functionalities:
• Persistent storage management for both event and non-event data.
• Reconstruction framework: the system that provides the users with the requested recon-

structed objects (such as Track, Cluster, Jet...).

• Run-time selection of the Reconstruction Algorithms together with the possibility that an
event can contain the same type of objects reconstructed with different algorithms (or dif-
ferent parameters) to allow easy comparison.

• Analysis framework: the system that manages the chain of event filters that constitute an
analysis cycle.
Communication with the persistent data store is handled by CARF rather than by any ex-

plicit code in the user packages. CARF is used to manage the reconstruction utilising a system of
reconstruction on demand in which reconstructed objects are only created/accessed from the store,
when they are needed.

Persistency Service

CMS Reconstruction and Analysis Software is required to store and retrieve the results of com-
puting intensive processes (and in general of any process which cannot be easily repeated). This
responsibility covers also raw data storage as we plan to use the same software framework in both
offline reconstruction and online level-three trigger.

Persistent Data

Three major types of information, which require to be made persistent, has been identified:
• Event Data: data associated to a given triggered beam crossing. They encompass:

– Raw Data: data read directly from the detector and eventually processed online.
These are WORM (Write Once, Read Many) data, to be securely stored and never
modified;

– Reconstructed Data: data produced by the reconstruction process. They can belong
to the whole collaboration, to a physics analysis group or to a single user. (Partial) re-
processing of event data produces new versions of reconstructed data. Reconstructed
data may be further structured in several layers according to use-cases and access
patterns.

– Event Tag: a small object which summaries the main feature of an event to be used
for fast selection.

Event data are usually organised in datasets according to run conditions, physics selection
criteria and access patterns.

• Environmental Data: data describing the state of the environment at the time the event
data were produced. They are identified by:

– a validity time period : which allows to relate an event to the corresponding environ-
mental data;

– a version.
Environmental data encompass:

– Machine status;
– Detector status (setup, calibration, alignment, ...);
– Running conditions;
– Reconstruction configuration, including algorithm parameters and user options.

These informations can be produced directly from slow control data acquisition system or
from offline processes.
Due to the fact that environmental data can be updated producing new versions it is re-
quired to put in place a mechanism which relates the event data (other than raw) with the
environmental data actually used during the reconstruction process.

• Meta-Data: data describing other data

– event catalog
– statistics.

Persistent Object Management

Persistent object management has been always at the centre of CARF development. It has been
always considered one of the major task of the analysis and reconstruction framework. Indeed
already the very first prototypes (notably 1997 test-beam prototype) had already an Objectivity
database as key component [11].

Today, persistent object management is fully integrated into CARF.
CARF manages, directly or through an utility toolkit:

• multi-threaded database transactions;
• creation of databases and containers;
• meta-data and event collections;
• physical clustering of event objects;
• persistent event structure and its relation with the transient one;
• deferencing persistent objects.

CARF provides also a software middle-layer, mainly in the form of template classes, which
helps developers of detector software in providing persistent versions of their own objects.

To avoid transaction overhead event objects are first constructed as transient instances and
made persistent (by a copy to their persistent representations) only at the end of the event process-
ing when a decision is finally taken about the fate of the event (send it to oblivion or save it in a
particular dataset) and about its classification.

Such a copy is not performed in accessing persistent events: physics modules access directly
persistent objects through simple C++ pointers. CARF takes care of all details to make sure that
the required objects are actually loaded in memory and that their pointers do not become invalid
while the event is processed.

This architecture avoids that detector software developers should become Objectivity ex-
perts. Indeed the goal is to make the use of Objectivity completely transparent to physics software
developers without making compromises in efficiency. This will also guarantee a painless transi-
tion to a new persistent technology if Objectivity/DB prove not to satisfy our requirements.

The present version of CARF offers persistent object management for:
• event structure and meta-data common to test-beams, simulation and reconstruction
• raw data from test-beam;
• simulated particles, simulated tracks, simulated hits and simulated digi;
• reconstructed objects common to test-beams and simulation.

Persistent Event Model

In designing a persistent object model two aspects should be taken into account:
• The logical model: which describe persistent capable classes, their relationships and the

corresponding navigation paths that a user has to follow (explicitly or implicitly) to obtain
a service (in a database application usually access to some information).

• The physical model: describing the localisation of the various objects on the storage media.
I/O granularity is different than object granularity and the way in which objects are physi-
cally clustered together affects considerably the performances of I/O bound applications.

An optimised persistent object model will minimise the number of I/O operations to be performed
to satisfy the major use-cases. The critical component of a I/O bound use-case is the access
pattern i.e. which objects are accessed and in which order. Therefore the design of a persistent

object model will require an optimisation of the major access patterns. If a single object model
can not optimise all major access pattern the use of techniques such as partial replication and
re-clustering could be required.

In a multi-user distributed environment concurrency issues should also be considered. Top-
level entry point objects could be required to be accessed at the same time by many applications.
These objects are usually also the one which requires to be more often updated when new infor-
mation is added to the database. These activities could create I/O bottlenecks which could require
replication and caching techniques to be solved.

The great majority of HEP applications are data reduction processes: they read a large
amount of data and produce a summary of it without modifying the input data. Therefore the
major use-case is a typical analysis job which access parts of an event and produces high level
reconstructed objects, tags or just statistics objects (Histograms..). It should be noted that, de-
pending on the stage at which the analysis is performed a different portion of the event is required
to be accessed:
• raw data belonging to a single detector in a calibration job (and the successive reconstruc-

tion jobs);
• a large portion of the reconstructed objects in first pass physics analyses which will produce

high-level (global) reconstructed objects;
• high-level reconstructed objects and a small portion of the reconstructed objects in final

physics analyses.
Other use-cases such as single event visualisation, detailed detector performance studies, should
also be taken into account but they can fit a large spectrum of persistent event models without
major additional performance penalties.

In the following description of the CMS persistent event model we will use a nomenclature
introduced in BaBar [14] and used also in the MONARC [15] project. These concepts, although
useful at this stage to describe our model using a common language, will not necessary correspond
to concrete entities in CMS final implementation.

This nomenclature classifies the information belonging to a HEP experiment event (from
higher levels to lower levels) according to creation and access patterns in:
• Tag (Event Selection Tag): used for fast event selection;
• Aod (Analysis Object Data): information used in final analysis;
• Esd (Event Summary Data): information required for detailed analysis and high-level (global)

reconstruction
• Rec (Reconstructed Data): detailed information about reconstructed objects required mainly

for detector and algorithm performance studies
• Raw (Raw Data): written once, never modified. For simulated events they include also all

information generated during the simulation step.
Tag, Aod and partially Esd will be accessed by the majority of the analysis jobs most of which will
not be computational intensive. Rec and Raw will instead seldom accessed, mostly by scheduled,
computational intensive, production jobs will run over them in a sequential fashion to generate a
new version of the corresponding Esd, Aod and Tag. It is interesting to note that analysis jobs
which require access to low level information usually require access also to the corresponding
high level information and indeed in most of the cases they start from it.

Logical Model

The logical relations reconstructed data and the event as a whole together with the navigation paths
used to access them have been already described in detail elsewhere [13].

data 0..n

A

RawData

{persistent}

event 1

1

Event
rawData()
{persistent}

1
RawEvent

data()
{persistent}

0..n

1

1

1

Detector
1..n

A

DetectorUnit

data()
{persistent}

ReadOut1..n

A

ReadOutUnit
data()

{persistent}rou
1

1..n

1..n

Hit

SpecificRD

find()
{persistent}

SpecificHit
id()

value()
{transient}

hit

1

0..n

Hit

SpecificROU

{persistent}

SpecificDetectorSet
newEvent()
{transient}

detectors1
1..n

Reconstructed
Hit

{transient}

hits

1

0detector
1

DetectorUnit represents an
elementary part of a detector.
It can encapsulate geometrical
properties and
calibrations.

ReadOutUnit models the readout
electronics.
It is responsible or creating (online)
and retrieving (offline) the
corresponding RawData from the
Event structure.

DetectorSet is an application specific
class which groups a set of
DetectorUnits for reconstruction
purposes.
It is responsible to cache the
hits beloging to its Detector Units for
the current event.
It can perform some preliminary
reconstruction to trasform the rawdata
into Reconstructed Hits
(e.g. building clusters out of strips)

Figure 1: Class diagram showing the classes collaborating in raw data handling and detector reconstruction:

in the first column are classes whose persistent instances are created event by event, in the second columns

are classes whose persistent instances exists for each ”set-up”, the third column includes transient classes

which are application specific

Figure 1 shows the object model that is presently implemented in CARF for raw data access
and detector reconstruction.
• DetectorSet: represents an application specific transient class which can group several De-

tectorUnits. It acts as interface among the physics modules, such as pattern recognition
algorithms, and the Detector Units. It can cache the “Reconstructed Hits” to enhance per-
formances.

• DetectorUnit: models an elementary component of a detector. it can be a persistent class
and its instances should be grouped into a “Set-Up” which is managed as a configuration
item. It shares with the DetectorSet the responsibilities of caching simulated hits, perform-
ing digitisation simulation and detector reconstruction.

• ReadOutUnit: models the read-out electronics of a detector. Its major responsibility is to
create raw data (in an online DAQ application or during digitisation simulation) and to read
them back in offline reconstruction applications. It is a persistent class and its instances are
grouped into a “Set-Up” which is managed as a configuration item. One-to-one, one-to-
many and many-to-one relations are allowed between DetectorUnits and ReadOutUnits.

• RawEvent: The entry point to all information about a “raw” event
• RawData; A simple persistent collection of the raw data belonging to a given ReadOutUnit

for a given event.

Physical Clustering

Raw data belonging to the same sub-detector are clustered together. This optimises detector stud-
ies and low-level reconstruction use-cases which usually access one type of sub-detector. Raw data

RecObj

Aod RecEsd−Esd −Rec

Figure 2: Class diagram representing a possible decomposition of a reconstructed object into Aod, Esd and

Rec components

are not required to be modified and no versioning mechanism is provided. This decision could be
revised if a re-analysis of simulation use-cases shows the needs of multiple versions of digitisation
simulation. Each CMS reconstructed class can be subdivided into Aod, Esd and Rec components
according to access patterns. Aod, Esd and Rec will be physically clustered independently. For a
given class, such as track or cluster, the Aod will include physics information such as a Lorentz
vector and particle identification, the Esd, detector related information such as position or energy
deposited in various calorimeter compartments and quality criteria, while the Rec could contain
detailed information about the original object constituents such as hits. This subdivision is not
rigid: some high-level objects can have only an Aod component while some low-level objects can
be completely clustered into Esd containers.

Figure 2 shows a model of a possible decomposition. In this case the Aod is directly inher-
iting from RecObj (abstract reconstructed-object class) and it is therefore the “real” reconstructed
objects. It has as private component a reference to the corresponding Esd which in turn as a the
Rec as private component. In this model it is supposed that the Aod explicitly exports (acting as a
proxy) the Esd services which in turn exports the Rec services. In this way two goals are achieved:
• the user has a unique coherent view of a reconstructed object through the Aod interface,

independently of the details of the Aod-Esd-Rec implementation.
• The information can be properly clustered according to the access pattern (moving some

information from one component to another require schema evolution)
When re-reconstruction is required (due to changes in calibrations or algorithms) a new

version of the reconstructed event (RecEvent) is created. Although the possibility of in-place
replacement is still being investigated, all use-cases show that versioning offers more flexibility
and safety. The new RecEvent refers to the previous version of all reconstructed objects which
do not require an update and holds all the ones which have been re-reconstructed. It should be
noted that the model of figure 2 allows the creation of new versions of Aod and Esd without any
modification or copy of the lower level information. Indeed different Aod versions can share the
same version of an Esd. This allows also an easy partial event replication (just a new version
with identical copy of the parts to replicate instead than a real re-reconstruction). In this schema
the responsibility of holding the information about which is the correct event collection to access
is demanded to some meta-data (event catalog). At present CARF manages meta-data mainly
through Objectivity naming features.

TestBeam Production in 1999

Since 1997 the CMS software group is working towards a more coherent common online and
offline reconstruction and analysis environment, based on common data formats, utility programs
and simulation frameworks.

During the prototype phase (1997-1998) a complete processing chain for test beam data
(data acquisition, reconstruction and analysis and analysis tools) was successfully tested in three
different CMS Test beam areas (H2, T9 and X5b). The data (about 300 GB) were collected using
a new data acquisition system in parasitic mode in order to avoid problems to those users that were
making detector performance studies.

From the beginning of 1999 the new processing chain is in production for the Tracker and
Muon Test Beams [12]. For each test beam, the CMS Test Beam DAQ system stores the data into
a separate federated database.

Two federations are used per test beam: one online and one offline. Data are written locally
on the online system and then, using an Objectivity version of the Central Data Recording (CDR)
package [16], the database files are moved from the disks connected to the online computer system,
to the disks connected to the offline data-server and attached to the offline federation (see figure 3).
All databases are also stored under HPSS [17].

Figure 3: CMS Online and Offline Federations

The total data volume handled by the different test beams during 1999, using this imple-
mentation of the CMS Test Beam DAQ system, was 800 GB. It is worth noticing that during the
Tracker test beams (X5B, T9) up to 25 concurrent users were accessing data (mostly interactively)
on the offline system without any observable degradation of its response.

ORCA Production in 1999

Higher Level Trigger (HLT) studies require persistency to be fully implemented already now.
The processing time for high-luminosity (1034cm−2s−1) events is too costly to be repeated many
times. (For example the ECAL pile-up simulation requires the reading of some 200 minimum bias
events, about 70 MB, for every trigger event).

We have built a production system in which we used 19 high-power CPUS (10 Linux Intel-
PC PIII 450-MHz, 7 Sun 300MHz UltraSPARC-II and 2 Sun 400MHz UltraSPARC-II) work-
ing in parallel and writing into two Objectivity Federations. We were able to process about 30k
events/day in this manner. The setting up of these systems had already given us valuable insight
into the sorts of problems that can arise in such a complex (for now) environment.

More than 600k events, with pile-up equivalent to LHC operation at a luminosity
of 1034cm−2s−1 were processed and stored in two Objectivity/DB federations. These have been
used for Trigger studies and this work is still continuing. This and future ORCA production

runs will be the basis for the validation of the Higher Level Trigger design and implementation
throughout 2000.

Summary

Since 1995 the CMS software group is working on possible solutions to the problem of persistent
data management.

The main conclusions are:
• A persistent object model well matches the description of the data for CMS experiment.
• An Object Data Base Management System (ODBMS) responds to our requirements for all

types of data and provides a coherent solution to the problem of persistent object manage-
ment.

• Objectivity/DB has been identified as possible candidate to be used as ODBMS for CMS.
In particular Objectivity/DB has been evaluated in several prototypes which successfully
stored and retrieved environmental data, Test-Beam data, simulation data, reconstructed
data and statistical data such as histograms. Objectivity/DB also successfully passed several
benchmark tests: for instance the ability to write at 170MB/s into a federated database [7].

References

1 CMS - The Compact Muon Solenoid, Technical Proposal CERN/LHCC 94-38, LHCC/P1,
CERN 1994.

2 The Compact Muon Solenoid, Computing Technical Proposal CERN/LHCC 96-45, CERN
1996.

3 RD45 - A Persistent object manager for HEP http://wwwinfo.cern.ch/asd/rd45
4 Libraries for HEP Computing - LHC++ http://wwwinfo.cern.ch/asd/lhc++/index.html
5 Status Report of the RD45 Project CERN/LHCC 97-6
6 Status Report of the RD45 Project CERN/LHCC 98-11
7 Status Report of the RD45 Project CERN/LHCC 99-28
8 Status Report of the LHC++ Project CERN/LHCC 98-11
9 D. Stickland, The Design, Implementation and Deployment of a Functional Prototype OO

Reconstruction Software for CMS. The ORCA project. Chep 2000 Abstract 108
10 V. Innocente, CMS Software Architecture: Software framework, services and persistency in

high level trigger, reconstruction and analysis CMS/IN 1999-034
11 L. Silvestris, A Prototype of the CMS Object Oriented Reconstruction and Analysis Frame-

work for the Beam Test Data CMS CR 1998/022 presented at CHEP98, August31 - Septem-
ber 4 1998 Chicago, Illinois, USA

12 L. Silvestris, CMS Test Beam Software: Online, Persistence, Reconstruction and Analysis
CMS/IN 1999-043

13 V. Innocente, CMS Reconstruction and Analysis: an Object Oriented Approach Computer
Physics Communications 110 (1998) 192-197 presented at CHEP97, Berlin, Germany

14 BaBar Offline Software Page http://www.slac.stanford.edu/BFROOT/www/Computing/Offline/index.html
15 Monarc project http://www.cern.ch/MONARC
16 Central Data Recording using Objectivity/DB http://wwwinfo.cern.ch/pdp/te/cdr/objy.html
17 HPSS Services at CERN http://wwwinfo.cern.ch/pdp/ps/hpss/Welcome.html

